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Salience-Driven Value Construction for Adaptive Choice
under Risk

Mehran Spitmaan,* “Emily Chu,* and ““Alireza Soltani
Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755

Decisions we face in real life are inherently risky and can result in one of many possible outcomes. However, most of what we know about
choice under risk is based on studies that use options with only two possible outcomes (simple gambles), so it remains unclear how the
brain constructs reward values for more complex risky options faced in real life. To address this question, we combined experimental and
modeling approaches to examine choice between pairs of simple gambles and pairs of three-outcome gambles in male and female human
subjects. We found that subjects evaluated individual outcomes of three-outcome gambles by multiplying functions of reward magnitude
and probability. To construct the overall value of each gamble, however, most subjects differentially weighted possible outcomes based on
either reward magnitude or probability. These results reveal a novel dissociation between how reward information is processed when
evaluating complex gambles: valuation of each outcome is based on a combination of reward information whereas weighting of possible
outcomes mainly relies on a single piece of reward information. We show that differential weighting of possible outcomes could enable
subjects to make decisions more easily and quickly. Together, our findings reveal a plausible mechanism for how salience, in terms of
possible reward magnitude or probability, can influence the construction of subjective values for complex gambles. They also point to
separable neural mechanisms for how reward value controls choice and attention to allow for more adaptive decision making under risk.
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Real-life decisions are inherently risky and can result in one of many possible outcomes, but how does the brain integrate
information from all these outcomes to make decisions? To address this question, we examined choice between pairs of gambles
with multiple outcomes using various computational models. We found that subjects evaluated individual outcomes by multiply-
ing functions of reward magnitude and probability. To construct the overall value of each gamble, however, they differentially
weighted possible outcomes based on either reward magnitude or probability. By doing so, they were able to make decisions more
easily and quickly. Our findings illustrate how salience, in terms of possible reward magnitude or probability, can influence the
construction of subjective values for more adaptive choice. j

[Signiﬁcance Statement

also chosen that restaurant. To compute the overall values for
such complex options or to directly compare those options, the
brain has to assign a value to each possible or relevant outcome
based on reward information (e.g., expected reward and proba-

Introduction

Every decision we make entails some degree of risk and uncer-
tainty and can result in one of many possible outcomes. For
example, when choosing which restaurant to go to for lunch, one

needs to consider many factors such as commute time, pricing,
and wait time, each of which could vary depending on traffic,
food availability, and the number of other customers who have
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bility of a given outcome) followed by integration or direct com-
parison of those values. Any of these processes can be very
daunting when there are multiple pieces of reward information
and many possible outcomes. Therefore, to enable decision-
making between real-world options, the brain must rely on cer-
tain mechanisms that simplify these valuation and choice
processes to reduce mental effort and to make value-based deci-
sion making more adaptive (Payne et al., 1988).

Although prospect theory (Kahneman and Tversky, 1979),
the standard model of choice under risk, has been very successful
in capturing many aspects of choice (Wu and Gonzalez, 1996;
Birnbaum and Navarrete, 1998; Gonzalez and Wu, 1999; Abdel-
laoui, 2000; Bruhin et al., 2010; Gléckner and Pachur, 2012), it
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fails to account for choice between gambles with more than two
alternative outcomes (complex gambles). As a result, various
models have been proposed to tackle valuation and choice be-
tween complex gambles, including cumulative prospect theory
(Tversky and Kahneman, 1992), transfer of attention exchange
(Birnbaum and Navarrete, 1998; Birnbaum, 2008), decision field
theory (Busemeyer and Townsend, 1993), and salience theory of
choice (Bordalo et al., 2012, 2013). Interestingly, most of these
models use a “rank-dependent” strategy similar to what is pro-
posed in cumulative prospect theory. This strategy assumes that
possible outcomes are ranked based on different variables, such
as reward probability, and the ranking, in turn, determines the
influence of each outcome on the overall value via different
(model-dependent) mechanisms. Despite the success of these
models in capturing an overall pattern of choice between com-
plex gambles, it is still unclear how mechanisms proposed in
these models can be instantiated in the brain given the compli-
cated computations required by such models.

Here, we used a combination of experimental and modeling
approaches to reveal plausible neural mechanisms underlying
valuation and choice between complex gambles. Considering its
role in selection between multiple sources of information for
further processing (Wolfe and Horowitz, 2004; Carrasco, 2011),
we hypothesized that attention is also involved in the evaluation
and choice between gambles with multiple outcomes. To test our
hypothesis, we performed an experiment in which human sub-
jects selected between pairs of gambles with only one non-zero
outcome (simple gambles) and pairs of gambles with three non-
zero outcomes (complex gambles). Furthermore, we developed a
large family of models to capture the observed choice behavior. In
these models, the value of a complex gamble was constructed by
differentially weighting the value of its possible outcomes via a
simple attentional mechanism. More specifically, attention could
be guided by different types of reward information (e.g., reward
magnitude, reward probability, expected value, etc.) to allow for
differential weighting of possible outcomes. This essential feature
of our model enabled evaluation of individual outcomes and
their weighting to rely on different pieces of reward information
(e.g., evaluation based on expected value but differential weight-
ing based on magnitude). We fit subjects’ choice behavior with
our and competing models to assess our models’ ability in cap-
turing choice behavior and to address two key questions regard-
ing the construction of reward value for complex gambles. First,
how are individual outcomes of a complex gamble evaluated?
Second, how are possible outcomes compared between two com-
plex gambles, or equivalently, how are the values of possible out-
comes combined to compute the overall value of a complex
gamble?

Materials and Methods

Subjects. A total of 64 human subjects (38 females) were recruited from
the Dartmouth College undergraduate student population. Subjects
were compensated with money and/or “t-points”, which were extra-
credit points for introductory classes in the department of Psychological
and Brain Sciences at Dartmouth College. The base rate for compensa-
tion was $10/h or 1 t-point/h. All subjects were then additionally re-
warded based on their performance, up to $15/h. This additional
performance-based compensation was always monetary. None of the
subjects was excluded from our final data analyses. All experimental
procedures were approved by the Dartmouth College Institutional Re-
view Board, and informed consent was obtained from all subjects before
participating in the experiment.

Experimental design. This study used a within-subject design. In two
experimental sessions, each subject performed two tasks (simple-gamble
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and complex-gamble tasks) in which he/she selected between a pair of
gambles on every trial and was provided with feedback about the out-
come of the chosen gamble. In both tasks, gambles were presented as
rectangular bars divided into different portions. A portion’s color indi-
cated the reward magnitude of that outcome, and its size signaled its
probability (see Fig. 1A—B). This gamble presentation was adopted from
arecent study in monkeys (Strait et al., 2014) because this design allowed
us to accurately present complex gambles without using any numbers,
making evaluation and decision making more intuitive. For both tasks,
subjects were instructed to maximize their reward points, which later
translated to monetary reward or t-points, by choosing the gamble that
they believed was more likely to provide more reward points. The se-
lected gamble was resolved following each choice according to probabil-
ities associated with possible outcomes of the chosen gamble.

Before the beginning of each task, subjects completed a training ses-
sion in which they selected between two sure gambles. These training
sessions were used to familiarize subjects with the associations between
four different colors (purple, magenta, green, and gray) and their corre-
sponding reward values, which depended on the task. In both training
sessions, all subjects selected the gamble with higher expected value (EV)
on >70% of the trials, indicating that they understood the color-reward
associations. For the simple-gamble task, reward values were always 0, 1,
2, and 4 points. For the complex-gamble task, 0 and 1 were used, but the
other two reward values varied for each subject depending on their sub-
jective utility (see Complex-Gamble Task). No reward (0 points) was
always assigned to the gray color. The color-reward assignment re-
mained consistent for each subject throughout both the training session
and its corresponding task. The color-reward assignments, however,
were randomized between subjects.

Simple-gamble task. The simple-gamble task consists of two types of
trials: (1) choice between a sure option and a simple gamble with two
outcomes of either a reward larger than that of the sure option or no
reward with complementary probabilities, and (2) choice between two
simple gambles (Fig. 1A). Reward magnitude and probability were rep-
resented by the color and length of the corresponding portion, respec-
tively. Subjects evaluated a total of 63 unique gamble pairs, each of which
was shown four times in arandom order (total of 252 trials). To make this
choice task nontrivial, the gamble pairs were constructed to be relatively
similar in expected value.

Complex-gamble task. During the complex-gamble task, subjects se-
lected between 70 unique pairs of gambles with three possible non-zero
outcomes. Each gamble was presented four times in a random order
(total of 280 trials). The complex-gamble task was similar to the simple-
gamble task with a few exceptions to increase the sensitivity of our exper-
imental paradigm (Fig. 1B). More specifically, we constructed gambles
with almost equal subjective values for each subject by tailoring the re-
ward magnitudes and probabilities of individual gamble outcomes to
each subject. First, the middle and large reward values were tailored for
each subject according to their utility function estimated from their
choice behavior in the simple-gamble task. No reward (0 points) and the
small reward (1 point) remained unchanged from the simple-gamble
task, whereas the middle and large magnitudes were adjusted to have
approximately double and quadruple the small reward’s utility, respec-
tively. We kept the maximum value of reward magnitude at 10, resulting
in the medians of 3 and 8 for the middle and large rewards, respectively.
Although reward magnitudes associated with each color might differ
between the simple-gamble and complex-gamble tasks for individual
subjects, the relative order of color—reward association did not. For ex-
ample, the largest reward value in the complex-gamble task would be
associated with the color previously corresponding to 4 points in the
simple-gamble task, etc.

To construct pairs of three-outcome gambles that are very close in
subjective utility for each subject, we also adjusted probabilities of alter-
native outcomes based on the subject’s estimated utility and probability
weighting functions from the simple-gamble task. More specifically, the
combination of outcome probabilities for each gamble was selected from
one of the following sets: {0.6, 0.2, 0.2}, {0.4, 0.3, 0.3}, {0.5, 0.3, 0.2}, and
{0.4,0.4,0.2}. From the set of all possible gambles, we then picked pairs of
gambles for which the difference in the subjective values was less than the
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Figure 1.  Experimental paradigm and alternative strategies for the construction of reward value. On each trial of the simple-gamble task () subjects selected between either a sure option and
asimple gamble or a pair of simple gambles before receiving feedback. In the complex-gamble task (B) subjects selected between pairs of complex gambles. A simple gamble could yield reward or
no reward with complementary probabilities, whereas a complex gamble offered three possible outcomes. To model the construction of reward value, we considered eight alternative quantities to
evaluate individual gamble outcomes (C; m, magnitude; u(m), utility function; p, probability; w(p), probability weighting function; EV; EV with w(p); EU; SU). We considered six of these quantities
(m, p, EV, EV with w(p), EU, and SU) to sort possible outcomes as the best, middle, and worst (V,, V., and V,, correspond to the values of best, middle, and worst outcomes, respectively). The
quantities u(m) and w( p) were not considered for sorting because they produce the same sorting results as m and p, respectively. We also considered five different weighting strategies by which
the values of individual outcomes can be combined to form the overall gamble value (D). The parameter o represents the stochasticity in choice, which transforms the difference in reward values
to the probability of choice. 3, and B, are fixed model parameters denoting the differential weights associated with the best and worst outcomes, respectively. Meanwhile, B'; denotes a separate
weight associated with the best outcome when the gamble includes a zero-magnitude outcome.

5% of the difference between the maximum and minimum subjective ~ Our procedure and the large set of possible pairs guaranteed that there
values of all possible pairs. We required the probabilities of the three ~ was no correlation between reward magnitude and probability of each
outcomes to differ from one another by a value larger than or equal to 0.1 gamble outcome (Pearson correlation: r = 0.01, p = 0.78; Spearman
to ensure that differences in probabilities were easily visually discernable. ~ correlation, r = 0.026, p = 0.33). Finally, we also included 20 “catch”
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trials in which one of the gambles was better than the other with respect
to both reward magnitude and probability. Catch trials were included to
determine whether subjects were attentive to the presented gambles or
not.

Modeling valuation and choice between simple gambles. We fit choice
behavior of individual subjects during the simple-gamble task using four
quantities to assign value to the only non-zero gamble outcome. These
include: expected value (EV = m X p); expected value with the proba-
bility weighting function [EV with w(p) = m X w(p)]; expected utility
[EU = u(m) X p); and subjective utility (SU = u(m) X w(p)]. We
considered a power law for the utility function:

u(m) = mP (1)

where p > 0 measures the curvature of the utility function. The proba-
bility weighting function (subjective probability) was modeled using the
one-parameter Prelec function (Prelec, 1998):

w(p) = exp(—(—Inp)?) (2)

where 7y > 0 measures the distortion of the probability weighting func-
tion. Finally, using reward values assigned to the two gambles on each
trial, the probability that the subject would choose the gamble on the
right (Pr) was computed as follows:

1
T 1+ exp(— (Vg — Vla)

Py (3)
where V and V, denote the value of the right and left gambles, respec-
tively, and o is a model parameter that measures stochasticity in choice
by transforming the difference in reward values to the probability of
choice.

Modeling valuation and choice between complex gambles. We used a
large family of models to fit choice behavior during the complex-gamble
task. Our models differed in their assumptions about how individual
outcomes of a given gamble are evaluated (8 possible quantities also
referred to as strategies; Fig. 1C), how individual outcome values are
sorted (6 possible quantities also referred to as strategies), and how the
sorted outcomes are combined to form the overall value of a three-
outcome gamble (5 possible strategies; Fig. 1D). Reward values assigned
to the two gambles on each trial were used to determine the probability of
selecting between the two gambles based on Equation 3. More formally,
the value of an option X, V, depends on sorting, evaluation, and weight-
ing strategies as follows:

3
k
V= EVQMD,X X DW= (4)

<stratgey#>>
k=1

where Vk<m,>,x is the value of outcome k of option X,
DWS;;;’;;Y +- x is the weight of outcome k of option X based on sorting
index I .~ x and the weighting strategy. VE . a1>.x can be equal to mag-
nitude (m), utility [u(m)], probability (p), or weighted probability
[w(p)], which we collectively refer to “single-attribute” evaluation strat-
egies. V_,,,~ x can also be equal to expected value (m X p), expected
utility [u(m) X (p)], expected value with weighted probability [m X
w(p)], or subjective utility [u(m) X w(p)], which we collectively refer to
as “combined-attribute” evaluation strategies. Sorting index for each
outcome, X, x € {b: best, m : middle, w : worst}, is computed after
sorting outcomes based on a given sorting quantity:

Ik<50rz>,X = Sort(Vk<evul>,X>50rtqunatiry))
ST Egunariey = {1, p, m X p, u(m) X p, m X w(p), u(m) X w(p)}.
(5)

Note that sorting outcomes based on m and u(m), and for p and w(p)

would be identical, reducing the number of sorting strategies to six.
k
Finally, DWI;‘;;’;L}@ .- x determines the weight for each outcome based

on the sorting index and one of five possible weighting strategies (Fig.
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1D). Weighting Strategy 1 equally weights the three possible outcomes,
1 1 1
DW = [Bh =3 B, = B B, = 5], where 3, B,,, and 3,, denote the

weight assigned to the best, middle, and worst outcome, respectively.
Strategy 2 assigns equal weights to the best and middle outcomes and

1 1
ignores the worst outcome, DW = [Bb = > Bn = > By = 0.

Strategy 3 uses a single parameter to distribute weights between the best
and middle outcomes while assigning zero weight to the worst outcome,
DW = [B,, (1 — By), 0]. Strategy 4 freely distributes weights to the
three outcomes using two parameters, DW = [B,1 — (B, + B.),B.]
Strategy 5 is similar to Strategy 4 but uses a separate parameter for dis-
tributing weight when there is a zero-magnitude outcome. We also tested
an additional strategy with equal weighting for middle and worst out-
comes. The results for this strategy are not reported because this strategy
was not able to successfully capture the choice data of any subject. Finally,
we note that although weighting Strategies 1, 2, and 3 can be considered
as special cases of Strategy 4, we tested these strategies since they have
fewer parameters, which could result in a better goodness-of-fit when the
number of parameters were considered (see Model comparison and data
analysis). All the possible combinations of strategies resulted in the gen-
eration of 240 alternative models (8 possible strategies for evaluating
individual outcomes, 6 for sorting outcomes, and 5 for weighting).

Competing models of valuation and choice between complex gambles. To
compare our model with existing models of valuation and choice be-
tween complex gambles, we fit choice behavior of our subjects during the
complex-gamble task using four different rank-dependent models. This
includes cumulative prospect theory (CPT; Tversky and Kahneman,
1992), transfer of attention exchange (TAX; Birnbaum and Navarrete,
1998; Birnbaum, 2008), salience theory of choice (STC; Bordalo et al.,
2012, 2013), and decision field theory (DFT; Busemeyer and Townsend,
1993). In the following sections, we provide a summary of these models
and how they are implemented.

Cumulative prospect theory. CPT generalizes prospect theory for choice
under uncertainty by extending PT in multiple ways. Importantly, by
adopting a cumulative representation for probability, CPT can be ap-
plied to gambles with more than two non-zero outcomes and removes
the need for the editing rules of combination and dominance detection.
More specifically, for gambles with strictly non-negative outcomes
(my, =m, = ... =m, = 0), the utility of gamble G, CPT(G), is equal to:

n

CPT(G) = 2| W| Dop;| = Wl Dpi | |ulm), (6)
j=1

i=1 j=1

where W(P;) is the cumulative weighting function of probability of re-
ceiving more than m(P; Ej -1pj), with boundary conditions of
W(0) = 0 and W(1) = 1. We used the following form of the cumulative
weighting function:

P'Y
RN CEa Ty [ g
where v is a free parameter. Values of y > 1 and y < 1 correspond to
S-shaped and inverse-S-shaped curves, respectively.

Transfer of attention exchange. In TAX, the utility of a gamble is equal
to a weighted average of the utilities of the outcomes (Birnbaum and
Navarrete, 1998; Birnbaum, 2008). These weights, referred to as “config-
ural” weights, depend on the probability and rank of the outcome
branches and therefore, the relationship between branches. This model
assumes that a decision-maker deliberates by attending to possible out-
comes of an action depending on their risk attitude. Not only can
branches leading to larger rewards attract more attention but branches
leading to lower-value outcomes can also attract greater attention if a
person is risk-averse. Importantly, the weights of branches result from
transfers of attention from one branch to another. If there were no con-
figural effects, then each branch would have weights purely as a function
of cumulative outcome probability, W( P). However, depending on the
subject’s point of view (i.e., risk attitude), weight is transferred from
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branch to branch. For example, for a risk-averse subject, weight can be
transferred from a higher-value branch k to a lower-value branch i
(my, = m;). If o(pyppn) represents the weight transferred from branch k to
branch i, the value of gamble G in TAX can then be written as follows:

S Upulm) + Dy Doy L) — ulmy)]e(piy iy 1)
TAX(G) = S

D tp)

8)
where #(.) is a monotonic function of probability and w(.) is equal to:
Xt
n +(11)k) =0
o(py po 1) = 5% t(p) , —1<8<1. (9)
n+1

Indicating that the weight transferred is a fixed proportion of the weight
of the branch giving up the weight. This formulation represent a general
case, but assuming lower-value branches receive greater weights (8 > 0),
a special TAX model (Birnbaum, 2008) can be written for the value of
three-outcomes gambles, G = (m,, p,; m,, p,; M5, p5), where m, = m, =
my = 0, as follows:

Au(m,) + Bu(m,) + Cu(ms;)
A+B+C >

TAX(G) = (10)

where

A= w(p,) — 28w(p,)/4
B=w(p,) — 8 X w(p,)/4 + X w(p)l4 | (11)
C=w(p;) + X w(p)/4+ 8 X w(p,)/4

where w(.) is the probability weighting function (Eq. 2).

Salience theory of choice. In STC, the decision-maker’s attention is
drawn to (precisely defined) salient payoffs (Bordalo et al., 2012, 2013).
This leads the decision-maker to a context-dependent representation of
gambles in which true probabilities are replaced by decision weights
distorted in favor of salient payoffs. By specifying decision weights as a
function of payoffs, STC provides a unified account of many empir-
ical phenomena, including frequent risk-seeking behavior, invariance
failures such as the Allais paradox, and preference reversals. The value
ofagamble in STC is computed by weighting possible outcomes based
on their salience as follows [for gambles with three outcomes, G =

(mI) P My, Dys M, Ps)]z

STC(G) = ¥, W(phawlu(m),

i=1

(12)

where W(.) is the cumulative weighting function (Eq. 7) and wﬁ is “salient
weight” for outcome i of gamble . The salient weight for each outcome is
computed using the salient ranking of each outcome:
j o (13)
W, = o 1 0
(287X p)

where 8 € (0,1]is a free parameter and 74 € {1, ...,|I|} is the salient rank-
ing of outcome i in gamble G, (lower 7 indicates higher salience). Given
two outcomes of gamble G, i and 7 € I, outcome i is considered to be
more salient than outcome 7if a(mly, m¥) > o(ml, m¥), where a(ml,m¥)
is the function measuring the saliency based on the outcome magnitude
in the two competing gambles / and k:

|m; — m]

Do + o] + 6 "

o(mi, mf) =

and 0 > 0 is a free parameter.
Decision field theory. Busemeyer and Townsend (1993) derive DFT
from an intuitive but sophisticated computational logic. Suppose that a
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decision maker attempts to choose according to rank-dependent values
of alternative gambles (such as those given by CPT) but does not have an
algorithm for effortlessly and quickly multiplying utilities and weights
together. The decision-maker could instead proceed by sampling the
possible utilities of options in proportion to their decision weights, com-
puting the running sums of these sampled utilities for each option, and
stopping (and choose) when the difference between the sums exceeds
some threshold determined by the cost of sampling. Considering this
algorithm, the probability of choosing the right option based on the
difference in values of the right and left options can be simplified as

follows:
V=V,
b, F(# >

DV V)T (15)

where Fis the sigmoid function [F(x,0) = 1/(1 + exp( — x/0))], and

3

Vy= z W(px)u(my;)

i=1

(16)

— Var(V. — V)
D(Vy, V) = VV‘”(VR -V

= \Var(Vy) + Var(V;) — 2Cov(Vy, V;)

Var(Vy) = 2 W(ps)[u(my) — Vi’

i=1

N2
Cov(Vy, V) = (g) E((W(PRi)[u(mRi) )

X (W(p)u(my) — Vi1))

W(.) is the cumulative weighting function (Eq. 7).

Model comparison and data analysis. We fit choice data using our mod-
els and the aforementioned competing models by minimizing the nega-
tive log likelihood of the predicted choice probability given different
model parameters. Minimization was done using the fminsearch func-
tion in MATLAB (MathWorks) over 50 initial model parameters. For
model comparison and selection, we used the Akaike information crite-
rion (AIC) or the Bayesian information criterion (BIC) to account for the
different number of parameters in different models. Although the mini-
mum AIC (and BIC) values varied across subjects, reflecting differences
in how each subject’s choice behavior could be best captured, all model
comparisons were performed using AIC or BIC values within each sub-
ject, making our statistical tests more robust. We also examined the
quality of model selection using Vuong’s test (Vuong, 1989; see below).
We note that because of the small number of trials (280) and the large
number of gamble pairs (70), it is impossible to perform cross validation
on data from individual subjects. Additionally, cross validation across
subjects is futile because of individual variability and differences in risk
attitude.

The fitting of choice behavior in the simple-gamble task allowed us to
estimate the utility and probability weighting function for individual
subjects. To identify the strategies used for sorting, evaluating, and
weighting in the complex-gamble task, we computed and compared the
goodness-of-fit (AIC and BIC) across all models to find the best overall
model. The best model was then used to determine the strategies used for
sorting, evaluating, and weighting. In other words, we did not find the
best average model across each strategy dimension and instead, found the
best overall model across all strategy dimensions.

To further examine the quality of model comparison, we also used
Vuong’s test (Vuong, 1989) for model selection. Specifically, Vuong’s
test determines the best model as the model with the log likelihood (LL)
significantly smaller than the one of the second best model. Considering
N samples of LL values for each model, Vuong statistic for comparing
models i and j is calculated using the following equation:
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[LLR(model;, model;) — Cj]

Vuong statistic = \/N <V ~ N(0,1)
LLR(model;, model;) = E LL;y — LL;y, (17)
k=1:N
i K
C,‘j = b lOgN

V=var(LL;y — LL;)r-1.n

where LLR is the sum of LL ratios for the two models, Cjj is a correction
term for the difference of degrees of freedom between two models, V'is
the variance of LL ratios between two models, and K; and K; are the
numbers of parameters in models i and j, respectively. It has been shown
that Vuong statistic follows a standard normal distribution N(0,1). As a
result, model 7 can be considered better than j if Vuong statistic > 1.96
and vice versa.

Finally, to quantify how easily a subject can distinguish between a pair
of gambles based on their subjective values, we defined “discriminability”
as follows:

Discriminability = > P(if Vi = V) + (1 = Pyp) (if Ve < V),
(18)

where V and V| indicate the value of the left and right gambles, respec-
tively, Py, is the probability of selecting the right gamble, and the sum is
computed over all unique pairs of gambles. The chance level of discrim-
inability is equal to 0.5.

Statistical analysis. We fit choice data using different models to find the
best model (using AIC and/or BIC) and estimating model parameters,
and moreover, used Vuong’s test to ensure the quality of model compar-
ison (for more details, see Model comparison and data analysis). Model
parameters were compared using two-sided sign test. We used Pearson’s
X7 test of homogeneity to compare ratio of subjects that adopted differ-
ent types of strategies. For correlation analyses, we used both Pearson and
Spearman correlations. For all tests, p << 0.05 was considered statistically
significant. We compared discriminability and changes in subjective val-
ues due to differential weighting within individual subjects. We also had
a between-subject comparison for the measure of discriminability be-
tween simple- and complex-gamble tasks.

Model recovery. To test the ability of our fitting procedure in capturing
the proposed mechanisms for the construction of overall reward value
and extracting the correct parameters, we simulated choice data using the
proposed models over a wide range of model parameters for the same
complex-gamble task performed by the subjects. We then fit the simu-
lated data with each of these models to compute the goodness-of-fit (in
terms of AIC) and estimate the original model parameters used to sim-
ulate the data. Given the large number of possible models (240), we only
considered the most frequent models identified in the experimental data
for this analysis. More specifically, we only considered three parameters
for sorting the values of individual outcomes (m, p, and EV) because
sorting based on the other five quantities [u(m), w( p), EU, EV with w(p),
and SU] resulted in very similar outcomes as the former quantities.
Moreover, we only considered Strategy 4 for weighting of values since
this was the most frequently used strategy for differential weighting.
Based on these specifications, we narrowed our analysis to a total of 24
models. For each of these 24 models, we generated choice data for the
same complex-gamble task performed by the subjects (with the same
number of parameters, trials, etc.) and fit the various choice data using
each of the 24 models.

For simulations presented in Figure 3, we generated choice data using differ-
ent combinations of strategies for sorting and evaluating, and weighting strate-
gies with different sets of parameters. More specifically, we used different

1
combinations of 3, B,,, and 3,, values: B, = 3 B, = B and 3, = 3 corre-

sponding to weighting Strategy 1; 3, = > B, = > and B,, = 0, correspond-

ing to Strategy 2; B, = [0:0.25:1],8,, = 1 — Bpand B, = 0, corresponding
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to Strategy 3; and finally 8, = [0]and 3, = [0.25:0.25:1], B, = [0.25]and
B, = [025:0250.75], B, = [05] and B, = [0.25:0.25:0.5], and
B, = [0.75] and [for all of which B,, = 1 — (B, + PB,)], corresponding to
Strategy 4. Nonetheless, our method can correctly identify the weighting strategy,
asevident in Figure 5 that shows only a small bias in estimation of 3 values for the
most comprehensive weighting strategy (Strategy 4). For all these simulations,
we used the median values of the estimated parameters from our subjects’ prob-
ability weighting and utility functions (p = 0.63andy = 0.88).

Results

The experiment consisted of two tasks. In the first task, subjects
selected between either a sure gamble and a simple gamble, or
between a pair of simple gambles (simple-gamble task; Fig. 1A).
In the second task, decisions were made between pairs of three-
outcome gambles (complex-gamble task; Fig. 1B). In both tasks,
gambles were presented as rectangular bars divided into different
portions. A portion’s color indicated the reward magnitude of
that outcome, and its size signaled its probability (see Materials
and Methods).

To examine whether subjects comprehended the objective of
both tasks, we computed the probability of selecting the gamble
with a larger EV on a given trial for each subject. During the
simple-gamble task, subjects selected the gamble with a higher EV
more often than chance (0.5), with a median equal to 0.79 across
all subjects (two-sided sign test, p = 1.12 X 107'% d = 4.11).
This tendency was weaker in the complex-gamble task, with the
median equal to 0.57 (two-sided sign test, p = 6.17 X 107%d =
0.68). Less frequent selection of gambles with a higher EV (i.e.,
more noisy behavior) was expected during the complex-gamble
task since the pairs of presented gambles were closer in EV. How-
ever, on catch trials of the complex-gamble task (where one of the
gambles was better than the other with respect to both reward
magnitude and probability), subjects selected the better option
more often than chance, with a probability larger than 0.7 and a
median of 0.95 (two-sided sign test, p = 1.08 X 10—19;d = 4.67).
Together, these results illustrate that subjects understood the ob-
jective of both tasks and were motivated earn reward points.

Evaluation of simple gambles conformed to PT

We used various models to fit choice behavior to identify how
individual subjects constructed the overall value of gambles in each
task (see Materials and Methods). For the simple-gamble task, we
assumed that subjects used one of the following four quantities to
evaluate the only non-zero outcome of each gamble: EV; EV with the
probability weighting function [w(p)]; EU; and SU.

Fitting of individual subjects’ choice behavior showed that the
model based on SU provided the best fit for the majority (83%) of
subjects in the simple-gamble task (Fig. 2A). This indicates that
subjects mainly used subjective utility to evaluate simple gambles.
In addition, the estimated utility and probability weighting func-
tions conformed to the predictions of PT. More specifically, the
majority of subjects (56 of 64, corresponding to ~88% of sub-
jects) exhibited concave utility functions (Fig. 2B), and most sub-
jects (43 of 64, corresponding to ~67% of subjects) exhibited an
inverse-S-shaped probability weighting function (Fig. 2C). Over-
all, these results demonstrate that PT can successfully account for
choice between simple gambles.

Modeling evaluation and choice between complex gambles

We hypothesized that attention is involved in the evaluation and
choice between gambles with multiple outcomes. Therefore, we
developed a family of models that rely on the assumption that the
values of individual gamble outcomes are differentially weighted
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Figure2. Prospect theory captured choice between simple gambles in most subjects. 4, Plot shows the fraction of subjects for whom a given model provided the best fit. The model based on SU
provided the best fit for the majority (53 of 64) of subjects. B, Plotted is the estimated utility function for individual subjects (light blue curves) based on the model with SU. The dark blue curve shows
a utility function formed based on the median of the distribution of estimated exponents of the utility function (p), as shown in the inset. The red dashed line shows the unity line. The solid and
dashed lines in the inset indicate p = 1and the median of p values (0.38 < p <<1.53, median: p = 0.63), respectively; the asterisk shows the median is significantly different from 1 (two-sided
signtest,p = 2.01 X 107>, d = 3.10). Overall, most subjects exhibited a concave utility function. C, Plotted is the estimated probability weighting function for individual subjects. The dark
blue curve shows a probability weighting function formed hased on the median of the distribution of estimated exponents of the probability weighting function (), as shown in the inset. The solid
and dashed lines in the inset indicate -y = 1and the median of y (0.36 << -y << 1.89, median: -y = 0.88), respectively. The asterisk shows the median is significantly different from 1 (two-sided
sign test, p = 0.008, d = 2.70). Overall, most subjects exhibited an inverse-S-shape probability weighting function as predicted by PT.
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Figure3. Fitting method was able to correctly identify the quantity used for evaluating individual gamble outcomes and for sorting in most cases. 4, Plot shows the goodness-of-fit (in terms of
the average AlC over a set parameters) for fitting choice data generated with a given model and fit with one of the possible 24 models. The models used to generate and fit the data are indicated on
the x- and y-axes, respectively. For each quantity used for evaluating individual outcomes (shown on the axes), there are three ways to sort based on magnitude, probability, and EV (first, second,
and third elements; not shown on the axes). In most cases, the model used to generate the data provided the best fit for the generated data, as reflected by the darkest square in each column being
on the diagonal. However, the fitting procedure could not perfectly distinguish between certain quantities used for generating the value of individual gamble outcomes: m and u(m); p and w( p); and
EV, EV with w(p), EU, and SU. B, The same as in A but when AIC values were normalized by the maximum value in each column. Figure 3-1, available at https://doi.org/10.1523/INEUR0SCI.2522-
18.2019.f3-1, shows that our fitting method was able to correctly identify the type of strategy (single- vs combined-attribute) used for evaluating individual gamble outcomes in majority of cases.
Figure 3-2, available at https://doi.org/10.1523/JNEUR0SCI.2522-18.2019.f3-2, shows that our fitting method can accurately recover model parameters without any systematic bias.

via a simple attentional mechanism. More specifically, attention ~ estimate the associated parameters correctly. More specifically,
could be guided by different types of reward information (e.g.,  we simulated choice data using the proposed models over a wide
reward magnitude, expected value, etc.) to allow for differential ~ range of model parameters for the same complex-gamble task
weighting of possible outcomes, perhaps via gain modulation.  performed by the subjects (see Materials and Methods). We sub-
This resulted in a large family of 240 unique models that differed ~ sequently fit the simulated data with each of these models to
in their assumptions about the strategies used for the evaluation =~ compute the goodness-of-fit (in terms of AIC) and to estimate

of individual outcomes of a given gamble (eight possible quanti-  the original model parameters used to simulate the data.

ties; Fig. 1C), for sorting and assigning different weights to indi- We found that for most cases, the model used to generate the
vidual outcomes (six possible quantities), and for combining  data provided the best fit, indicating that the fitting could be used
outcome values to construct the overall value of a complex gam-  to identify the mechanism underlying valuation (Fig. 3). We also

ble (5 possible strategies; Fig. 1D; see Materials and Methods).  found that the fitting procedure could not perfectly distinguish
For model comparison, we used the AIC and/or BIC to account ~ between certain strategies used for the evaluation of individual

for different numbers of parameters in different models. outcomes: m and u(m); p and w(p); and EV, EV with w(p), EU,
Considering the complexity of the proposed models, we first ~ and SU. As a result, we took caution when interpreting the fitting
tested whether our fitting procedure could identify the underly-  results of subjects’ actual data with regard to the exact strategies

ing mechanisms for the construction of overall reward value and ~ used to evaluate individual outcomes.
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In addition, we examined the overall accuracy of our method
in identification of the strategy used for evaluating individual
outcomes. First, we fit choice data generated by a given model
with each of the 24 possible models and computed the “average”
AIC across all the models with single-attribute evaluation and
those with combined-attribute evaluation. This was done sepa-
rately for sorting based on magnitude, probability, or EV. We
found that the average AIC across all types of sorting was smaller
for the correct model (Fig. 3-1A—C, available at https://doi.org/
10.1523/JNEUROSCI.2522-18.2019.f3-1, diagonals have smaller
AIC values than off-diagonals). However, the average AIC of the
combined-attribute models was only slightly worse than that of
the single-attribute models for fitting data generated with single-
attribute strategies when sorting based on magnitude (Fig. 3-1A,
available at https://doi.org/10.1523/JNEUROSCI.2522-18.2019.
f3-1). This finding was not observed when sorting based on prob-
ability or EV (Fig. 3-1B,C, available at https://doi.org/10.1523/
JNEUROSCI.2522-18.2019.f3-1).

Average AIC values, however, are not very informative about
correct model identification since the best model is determined
based on the minimum AIC and not the average AIC. Therefore,
for a given set of data, we also computed the difference between
normalized AIC for the best models (models with minimum
AIC) based on single- and combined-attribute evaluation strate-
gies. We found significant differences between the AIC values
supporting the correct model (Fig. 3-1 D-F, available at https://
doi.org/10.1523/J]NEUROSCI.2522-18.2019.f3-1). Although
smaller for data generated with single-attribute evaluation strat-
egies and magnitude sorting, differences in AIC for the best mod-
els allowed the correct model to be identified in majority of cases.
More specifically, only in 3-15% of the instances was the type of
evaluation strategy incorrectly identified, such as when using data
generated with single-attribute evaluation and sorted based on
magnitude (Fig. 3-1G-I, available at https://doi.org/10.1523/
JNEUROSCI.2522-18.2019.f3-1). Overall, these analyses demon-
strate that the error in identification of the type of evaluation
strategy (single- vs combined-attribute evaluation) is relatively
small.

Finally, we validated our fitting method by comparing es-
timated and actual model parameters. We found the overall
relative differences between the actual parameters and the pa-
rameters estimated by the same model used for generating the
data to be very small, which indicates little to no systematic biases
in our analysis (Fig. 3-2, available at https://doi.org/10.1523/
JNEUROSCI.2522-18.2019.f3-2). Together, these simulation re-
sults support the feasibility of our fitting approach for identifying
mechanisms used for the construction of overall reward value in
the real data.

Subjects used different quantities to evaluate and sort the
outcomes of complex gambles

We next fit individual subjects’ data with our models to identify
the strategies used for sorting, evaluating, and weighting of gam-
ble outcomes. We computed and compared the goodness-of-fit
across all models based on all combinations of strategies to find
the best overall model for each subject. We also examined the
quality of model selection using Vuong’s test.

We first examined the quantity used by subjects to sort the
possible outcomes of complex gambles into best, middle, and
worst outcomes to differentially weigh them. We found that 61%
of subjects sorted gamble outcomes based on outcomes’ reward
magnitudes or probabilities (Fig. 4A). This percentage was larger
than the percentage of subjects who used a combination of re-
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ward information (EV, EV with w(p), EU, or SU) for sorting
outcomes ()qf) =5.28,p = 0.012).

We then compared quantity or strategy used by each subject to
evaluate individual gamble outcomes. We computed the percent-
age of subjects who used a given quantity to evaluate individual
outcomes, as determined by the model that provided the best fit
in terms of the AIC (or BIC, see the last paragraph of this section).
We found that 41, 25, 16, and 12% of subjects evaluated individ-
ual outcomes based on EU, SU, EV, and EV with w(p), respec-
tively (Fig. 4B). These results demonstrate that most subjects (60
of 64, corresponding to 94% of subjects) combined information
about reward probability and magnitude to evaluate individual
outcomes of complex gambles.

Therefore, although 94% of subjects combined reward infor-
mation to evaluate individual gamble outcomes, most subjects
used a single piece of reward information when sorting outcomes
for weighting. We found similar dissociation between the strate-
gies used for sorting and evaluating individual outcomes based
on the mean AIC across all subjects instead of the best model for
individual subjects (Fig. 4-1, available at https://doi.org/10.
1523/JNEUROSCI.2522-18.2019.f4-1). This stark difference
demonstrates that separate mechanisms were involved in evalu-
ating and combining the values of individual outcomes to con-
struct an overall value for complex gambles.

As mentioned earlier, our method could misidentify single-
attribute evaluation strategies with combined-attribute ones in
<~15% of model instances when sorting based on magnitude.
Considering this relatively small error rate and the fact that we
ensured that goodness-of-fit for the best model is significantly
better than the second best model (using Vuong’s test), we esti-
mate that model misidentification could potentially result in mis-
labeling only a few subjects (<9), which does not change our
main conclusion. However, the fitting procedure could misiden-
tify the exact evaluation strategy among combined-attribute
strategies (i.e., EV, EV with w(p), EU, and SU), and thus, we used
caution in interpreting the exact strategy used for combined-
attribute evaluation.

To determine how subjects combined outcome values to form
the overall value of a gamble (or equivalently, to directly compare
gambles), we then compared five alternative models of outcome
weighting (Fig. 1D). This analysis revealed that weighting Strat-
egy 4, which assigned different weights to the three possible out-
comes, provided the best fit for a majority (80%) of the subjects
(Fig. 4C). Moreover, choice behavior of only 5 of 64 subjects (8%)
were best fit by Strategies 2 and 3 (which ignored the worst out-
come), indicating that the majority of subjects (92%) considered
the values of all three possible gamble outcomes when making
decisions.

To examine whether the best model for each subject is signif-
icantly better than the rest of the models, we performed Vuong’s
test (Vuong, 1989; see Materials and Methods). We found that 19
subjects (~30% of subject) showed no significant difference be-
tween the best model (model with minimum LL value) and the
second best model. However, for the majority of subjects (45
subjects equal to 70% of subjects), we found the same pattern of
results as in our original analysis using all data (Fig. 4D-F).

Finally, to further illustrate that our results do not depend on
the specific metric for the goodness-of-fit, we repeated our model
selection and strategy identification based on the BIC. As shown
in Fig. 4-2, available at https://doi.org/10.1523/JNEUROSCI.
2522-18.2019.f4-2 and Fig. 4-3, available at https://doi.org/
10.1523/JNEUROSCI.2522-18.2019.f4-3, we found qualitatively
similar results using BIC as the goodness-of-fit and our main
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Figure4. Mostsubjects sorted and weighted possible outcomes based on reward magnitude or probability (single-attribute sorting) but evaluated each gamble outcome based on a combination
of reward attributes (combined-attribute evaluation). 4, Plot shows the fraction of subjects whose choice was best fit by a given quantity for sorting, and the sum over all single-attribute vs
combined-attribute sorting. Overall, most subjects (61%) used a single reward attribute for sorting gamble outcomes; reward magnitude was the most used quantity (40%) followed by reward
probability (21%). Note thatidentical results were obtained from sorting outcomes based on m and u(m), and for p and w( p). B, Plot shows the fraction of subjects whose choice was best fit by a given
strategy to evaluate individual gamble outcomes. Overall, most subjects (94%) used a combination of reward attributes for evaluating individual gamble outcomes, with EU being the most used
quantity (41%). C, Plot shows the fraction of subjects whose choice was best fit by a given weighting strategy. Weighting Strategy 4 provided the best fit for the majority (51 of 64, corresponding
0 80%) of subjects. D—F, Plots are similar to A—Cbut show the results for subset of subjects for whom the fit based on their best model was significantly different from other models using Vuong's
test (N = 45). Thirty-eight percent of subjects sorted gamble outcomes based on reward magnitude, whereas 22% used reward probability for sorting (D). Forty percent of subjects used EU to
evaluate individual outcomes in complex gambles (E). Strategy 4 provided the best it for the majority (36 of 45, corresponding to 80%) of subjects (F). Figure 4-1, available at https://doi.org/
10.1523/JNEUR0SCI.2522-18.2019.f4-1, shows qualitatively similar results are obtained when using the average AlC to determine the best overall strategies for sorting, evaluating, and weighting.
Figure 4-2, available at https://doi.org/10.1523/JNEUR0SCI.2522-18.2019.f4-2, and Figure 4-3, available at https://doi.org/10.1523/JNEUR0SCI.2522-18.2019.f4-3, show that similar results are

obtained using BIC as the goodness-of-fit measure.

conclusions about the strategies used for sorting, evaluating, and
weighting of individual outcomes still hold.

Differential weighting could not be captured by PT

Considering the complexity of models used for fitting, we also
examined whether the proposed differential weighting is neces-
sary to capture choice behavior (i.e., our results are not affected
by overfitting) beyond what can be explained by changes in the
utility and probability weighting functions in PT. In addition, we
also tested whether our fitting approach could identify the under-
lying model parameters without any systematic bias in the pres-
ence and absence of differential weighting (an extension of the
analyses presented in Fig. 3).

To that end, we generated choice data based on three models
that evaluated individual gamble outcomes using subjective value
(the most common quantity used for evaluation among our sub-
jects), sorted these outcome values based on magnitude, proba-
bility, or expected value, and then combined these outcome
values based on Strategy 4 (the most common weighting strategy
used among our subjects) using a wide range of weighting param-
eters similar to those used for simulations presented in Figure 3.
We then fit these simulated data with each of the models used to
generate the data as well as with the model without differential
weighting.

We found that the model with differential weighting was able
to fit simulated choice data very well and captured the original
model parameters without any bias and with small error in most
cases (Fig. 5 and Fig. 5-1, available at https://doi.org/10.1523/
JNEUROSCI.2522-18.2019.f5-1, Fig. 5-2, available at https://

doi.org/10.1523/JNEUROSCI.2522-18.2019.f5-2, Fig. 5-3, avai-
lable at https://doi.org/10.1523/JNEUROSCI.2522-18.2019.15-
3). In contrast, the model without differential weighting was not
able to fit the simulated data well and provided systematically
biased estimates of risk-preference parameters. More specifically,
the estimated p and vy values based on the model without differ-
ential weighting were smaller than the actual values (Fig. 5 and
Fig. 5-2, available at https://doi.org/10.1523/JNEUROSCI.2522-
18.2019.15-2). This indicates that some of the previously ob-
served concavity of the utility function and curvature of the
inverse-S-shaped probability weighting function could be due to
differential weighting mediated via attentional mechanisms. To-
gether, these results not only validate our approach but also illus-
trate that prospect theory cannot be used to fit data for which
value construction is influenced by differential weighting.

Our model accounts for choice behavior better than

competing models

To compare our model and competing models for valuation of
complex gambles, we used four rank-dependent models to fit our
experimental data. This includes CPT, TAX, STC, and DFT (see
Materials and Methods).

We found that our model can better predict choice behavior
for the majority (55%) of subjects (Fig. 6A). We also compared
the ability of our model versus each of the competing models and
found that the best competing model (STC) could fit data better
for only one-third of subjects (percentage of subjects that were
better fit with a competing model: CPT = 14%; TAX = 20%;
DFT = 12%; STC = 32.8%; Fig. 6B). Overall, these results dem-
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The model with differential weighting can estimate original parameters without a significant bias, whereas the model without differential weighting systematically underestimates p

and .4, Plots show the distribution of the relative error in the estimation of weights assigned to the best, medium, and worst outcomes (from left to right). For these simulations, the reward values
of individual gambles were computed using nonlinear utility and probability weighting functions on the average risk-preference in our subjects (p = 0.6and y = 0.9), and outcomes were
sorted based on reward magnitude. B, The distribution of estimated values for p and -y across all models. Overall, the estimated parameters were centered around the actual values. C, The
distribution of estimated values for p and -y when choice data were fit with a model without differential weighting. The estimated parameters were significantly smaller than the actual values. D—F,
The same as A—Cbut for sorting based on reward probability. G-I, The same as A—Cbut for sorting based on EV. There was a small systematic bias in estimated parameters when the choice data were
generated with sorting based on EV. Nevertheless, this bias does not affect our results because most of our subjects sorted outcomes based on reward magnitude or probability (and not EV). Figure
5-1, available at https://doi.org/10.1523/JNEUR0SCI.2522-18.2019.f5-1, shows that the model without differential weighting cannot fit choice data generated with differential weighting and
nonlinear utility and probability weighting functions. Figure 5-2, available at https://doi.org/10.1523/JNEUR0SCI.2522-18.2019.f5-2, and Figure 5-3, available at https://doi.org/10.1523/
JNEUROS(I.2522-18.2019.5-3, show similar results when using data generated with linear utility and probability weighting functions.

onstrate that our plausible yet simpler A

model can outperform more complex our model
models in capturing choice behavior. Im-

portantly, our model distinctly allows for CPT
the evaluation of individual outcomes and TAX
their combination to rely on different

pieces of information (e.g., evaluation DFT
based on expected value but differential sTC
weighting based on magnitude). There-
fore, the superiority of our model in
capturing individual subjects’ choice be-
havior could indicate that individual vari-
ability in evaluating complex gambles
could arise from differences in the type of
reward information that guides attention.

Figure 6.
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Our model can better capture choice behavior compared with competing models. 4, Plotted is the percentage of
subjects whose choice behavior was best fit by our model and the four competing models. Overall, our model provides the best fit
for choice behavior in the majority (55%) of subjects. B, Plotted is the percentage of subjects whose choice behavior was better fit

by one of the four competing models when we did not include our model. The STCmodel is the best model among the competing

Subjects assigned larger weights to the best  models.
and worst outcomes in terms of reward
magnitude and probability
Having established that most subjects used differential weighting
to combine reward values of possible outcomes, we then exam-
ined the weights assigned to the three outcomes within a gamble.
For subjects who sorted outcomes based on a single reward attri-
bute, we observed significant differences in weight assignments
(Fig. 7A-D). More specifically, the weight assigned to the best
(largest magnitude or probability) outcome was significantly
greater than that of the middle outcome [B, — 3,,, = 0.13 = 0.27
(mean = SD), two-sided sign test, p = 0.02, d = 0.44; Fig. 7C].
The worst outcome also had a significantly greater weight com-
pared with the middle outcome [B,, — B, = 0.09 = 0.37
(mean * SD), two-sided sign test, p = 0.0005, d = 0.23; Fig. 7D].
There was no significant difference between the weights for the
best and worst outcomes (two-sided sign test, p = 0.61,d = 0.11).
These results illustrate that the most important outcomes
(best and worst based on a given subject’s sorting) were assigned
larger weights for the construction of overall reward value. In

contrast, for subjects who sorted outcomes based on a combina-
tion of reward information (EV, EV with w( p), EU, or SU), there
were no significant weight differences between the best and mid-
dle outcomes [B, — B,, = 0.06 = 0.30 (mean * SD), two-sided
sign test, p = 0.7, d = 0.17; Fig. 7E-G] or between the worst and
middle outcomes [B, — B, = —0.08 £ 0.45 (mean *= SD),
two-sided sign test, p = 0.98, d = 0.19; Fig. 7H]. These results
indicate that differential weighting of gamble outcomes was con-
sistent mainly among subjects who sorted outcomes based on a
single piece of reward information.

To address the robustness and consistency of our method and
estimated model parameters, we also measured the variability in
the estimation of model parameters. More specifically, we used
the best model for a given subject to fit 90% of choice data (ran-
domly sampled) from that subject and estimated all model pa-
rameters. We then repeated this procedure 100 times to calculate
the distributions of estimated parameters for each subject. Using
the distribution of each model parameter, we then computed the


https://doi.org/10.1523/JNEUROSCI.2522-18.2019.f5-1
https://doi.org/10.1523/JNEUROSCI.2522-18.2019.f5-2
https://doi.org/10.1523/JNEUROSCI.2522-18.2019.f5-3
https://doi.org/10.1523/JNEUROSCI.2522-18.2019.f5-3

Spitmaan, Chu et al. e Salience-Driven Valuation of Risky Options

A B, B

Bworst
Emiddie
Mbest

no. subjects
]

Bo

Bu 03 04 05

Figure 7.

no. subjects
- H ~

J. Neurosci., June 26, 2019 - 39(26):5195-5209 « 5205

SHLUL

o
- — %

025 0.5
5
3
1
025 0.5 -0.5 0 0.5

welght diff(best-middle) weight diff(worst-middle)

Differential weighting was consistent among subjects who sorted outcomes based on either reward magnitude or probability. 4, The ternary plot shows the values of differential

weighting for subjects who used a single gamble attribute to sort possible outcomes (N = 39). Each dot represents a set of weights as indicated by the distance of the dot from the three corners. B,
Plot shows the distribution of absolute weight values assigned to each outcome within a three-outcome gamble. Dashed and solid lines represent median and 0.33, respectively. The median weights
assigned to the best, middle, and worst outcomes (as determined by either reward magnitude or probability) were 0.33,0.31,and 0.34, respectively. C, Plot shows the distribution of relative weight
differences between the best and middle outcomes. The relative weights were computed by normalizing the two weights by their sum. Blue dashed and solid gray lines represent the median and
0, respectively, and the asterisk indicates that the median difference was significantly different from zero (two-sided sign test, p << 0.05). D, Plot shows the distribution of relative weight differences between the
worst and middle outcomes. Conventions are the same as in C. E-H, Plots are similar to A-D but show the results for subjects who used a combination of reward information (EV, EV with w(p), EU, or SU) for
sorting and assigning weights (V = 25). Figure 7-1, available at https://doi.org/10.1523/INEUR0SCI.2522-18.2019.f7-1, shows that our method can estimate weighting parameters consistently. Figure 7-2,
available at https://doi.org/10.1523/JNEUR0SCI.2522-18.2019.f7-2, shows that observed differential weighting was not driven by specific color—reward assignments.

coefficient of variation (CV; equal to the SD of the distribution
divided by its mean), as a standardized measure of dispersion in
the estimated model parameters. Small values of CV indicate
consistency or robustness of estimated parameters. To provide a
baseline, we also computed CV for model parameters in the
simple-gamble task using the same procedure described above.

Overall, we found relatively small CV values for the estimated
weighting parameters of all reward outcomes (median CV =
0.21, 0.17, and 0.25 for the best, middle, and worst outcomes,
respectively; Fig. 7-1, available at https://doi.org/10.1523/
JNEUROSCI.2522-18.2019.f7-1). As a baseline for comparison,
the median of CV of the estimated model parameters (p, y and o)
across subjects in the simple-gamble task was 0.16. These results
illustrate that our method can estimate model parameters consis-
tently, and thus, our method can be used to make reliable infer-
ences about differential weighting of possible outcomes.

In our study, reward magnitude was represented by specific
combinations of colors for different subjects. Therefore, we also
examined that our observations were not driven by certain com-
binations of color-reward assignments (e.g., red for the largest
reward could be more effective than green); that is, there was no
systematic color bias. We categorized subjects into six possible
groups based on their color-reward assignments and examined dif-
ferential weighting for each group (Fig. 7-2, available at https:/
doi.org/10.1523/INEUROSCI.2522-18.2019.7-2). This analysis did
not reveal any evidence for systematic differences between the
groups, indicating that differential weighting of possible outcomes
was unlikely because of specific color-reward assignments.

Larger weighting of the best and worst outcomes was not driven by
information seeking

In designing complex gambles, we only ensured that the subjec-
tive utilities of each gamble pairs were close in value for each
subject. Therefore, it is possible that the distribution of the prob-
ability of middle outcomes across all trials was less variable (or

disperse) than those of the best and worst outcomes. A larger
dispersion of the distributions for the best and worst outcome
probabilities may result in these outcomes to be perceived as
more informative and thus, weighted more strongly. To exclude
such an explanation for our observation, we computed the dis-
tributions of reward probability for the best, middle, and worst
outcomes (when sorting based on magnitude) for each subject
and calculated SD (as a measure of dispersion) of these distribu-
tions across all subjects.

As shown in Figure 8, we did not find any significant difference
between the medians of standard deviations of outcome probabili-
ties for the best, medium, and worst outcomes. Therefore, we did not
find any evidence for the dispersion of outcome probabilities (and
thus the informativeness of outcomes) to underlie the observed
overweighting of the best and worst outcomes.

Differential weighting could enable subjects to more easily and
quickly choose between complex gambles

To address possible advantages of differential weighting, we ex-
amined the influence of this mechanism on overall risk prefer-
ence and whether it allowed subjects to make decisions more
easily. Critically, we designed the complex-gamble task such that
the pair of gambles presented on each trial have similar SU (using
a wide range of reward probabilities) to detect additional mech-
anisms involved in the construction of reward value (see Materi-
als and Methods). This feature also made decision making more
difficult in the complex-gamble task.

To quantify the influence of differential weighting on overall
risk preference, we computed the relative change in the value of
each gamble after the inclusion of differential weighting based on
estimated weights for each subject (for all gambles used in the
complex-gamble task). We found that when subjects used reward
magnitude for sorting, assigning a larger weight to the best out-
come (i.e., outcome with the largest magnitude) resulted in an
increase in the value of gambles, thereby increasing risk-seeking
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distributions of SD for the three outcomes (two-sided sign test; best vs middle: p = 1.0, d = 0.01; best vs worst: p = 0.38, d = 0.03; middle vs worst: p = 0.38,d = 0.01).
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Figure 9. Differential weighting could enable subjects to make decisions more easily and quickly. 4, B, Influence of differential weighting on risk preferences. Plots show the distributions of
changes in subjective value of a three-outcome gamble after including differential weighting based on estimated weights for individual subjects who used reward magnitude (4) or probability (B)
for sorting. Dashed lines represent the median, which were equal to 0.19 and 0.16 in A and B, respectively, and were significantly different from 0 (two-sided sign test; p = 7.8 X 10 3,
6.2 X 10 ~%,d =0.88,0.92). , Plot shows the discriminability of subjects for the simple-gamble (simple) task as well as the complex-gamble task based on the models with and without differential
weighting (DW). The inclusion of differential weighting significantly increased discriminability in the complex-gamble task, as shown by the asterisk (two-sided sign test,p = 1.4 X 10~ '°,d =
0.51). D, E, Influence of differential weighting on discriminability. Plots show the distributions of changes in discriminability between pairs of three-outcome gambles after including differential
weighting based on estimated weights for individual subjects who used reward magnitude (D) or probability (E) for sorting, both of which are significantly different from 0 (median = 0.15, 0.14;
two-sided sign test;p = 1.4 X 10 ~3,2.6 X 10 % d = 0.96,1.02). Other conventions are similar to those in A and B. F, Plotted is the change in median reaction time between the simple- and
complex-gamble tasks versus the corresponding change in discriminability due to differential weighting for individual subjects. Overall, a decrease in reaction time from the simple-gamble to
complex-gamble task was correlated with an increased discriminability between the two tasks. Figure 9-1, available at https://doi.org/10.1523/JNEUR0SCI.2522-18.2019.9-1, shows changes in
subjective value of a three-outcome gamble after including differential weighting with a given set of weights, reward probabilities, reward magnitudes, and using magnitude for sorting.

behavior (Fig. 9A). Similar but weaker changes in subjective val-
ues were observed in the case of sorting based on reward proba-
bility (Fig. 9B).

To better understand how risk preference is influenced by
differential weighting, we also computed the relative change in
the value of each gamble after the inclusion of differential weight-

ing using a wide range of weights and reward probabilities when
sorting based on magnitude (Fig. 9-1, available at https://doi.org/
10.1523/JNEUROSCI.2522-18.2019.f9-1). We found that the
change in overall value depended on which outcome was assigned
the largest weight. More specifically, the overall value of a three-
outcome gamble always increased if the outcome with the highest
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expected value (or subjective utility) was assigned the largest
weight, resulting in more risk-seeking behavior. In contrast, the
overall value decreased if the outcome with the lowest expected
value was assigned the largest weight, resulting in more risk-
aversive behavior.

To quantify how easily a given subject could distinguish be-
tween pairs of gambles, we defined discriminability based on the
subjective values of gambles estimated for that subject (see Ma-
terials and Methods). We computed and compared discrim-
inability for each subject in the complex-gamble task as well as in
the simple-gamble task using the best subject-specific models
with and without differential weighting, respectively. We found
the effect of differential weighting on discriminability to be more
complex than that on the overall gamble value, but overall, dif-
ferential weighting increased discriminability for most weight
values (Fig. 9D,E). As expected, discriminability was smaller
across all subjects in the complex-gamble task compared with the
simple-gamble task because of differences in task design (Fig.
9C). The inclusion of differential weighting, however, signifi-
cantly increased discriminability across all subjects during the
complex-gamble task (two-sided sign test, p = 1.4 X 10 7'°, d =
0.51). In other words, subjects who used differential weighting could
more easily discriminate and thus, choose between gambles.

To test whether this increase in discriminability also allowed
for faster decision making, we examined the correlation between
the change in the average reaction time between the simple- and
complex-gamble tasks and the corresponding change in discrim-
inability because of differential weighting within individual sub-
jects. We found a significant negative correlation between the
change in reaction time and the change in discriminability for
subjects who sorted outcomes based on reward probability or
magnitude (Pearson correlation: r = —0.32, p = 0.035; Spear-
man correlation, r = —0.39, p = 0.017; Fig. 9F). A similar result
was found when considering all subjects (Pearson correlation:
r = —0.34, p = 0.006; Spearman correlation, r = —0.38, p =
0.002). This indicates that subjects became relatively faster in the
complex-gamble task depending on the extent to which they used
differential weighting for discrimination between gambles. To-
gether, these results suggest that differential weighting enabled
subjects to more easily and quickly select between three-outcome
gambles.

Discussion

By comparing choice between simple and three-outcome gam-
bles within subjects, we examined how valuation and decision-
making between more complex gambles are influenced by
attentional mechanisms. We found that choice between simple
gambles was consistent with prospect theory since evaluation
based on subjective utility provided the best fit for our data.
When evaluating three-outcome gambles, subjects also com-
bined reward probability and magnitude to assign a value to each
gamble outcome, but at the same time, most subjects differen-
tially weighted possible outcomes based on either reward magni-
tude or probability. These results point to a novel dissociation
between how reward information of complex gambles is pro-
cessed: valuation of each outcome is based on a combination of
reward information, whereas weighting of possible outcomes
mainly relies on a single piece of reward information. This flexi-
ble weighting of possible outcomes, in turn, allowed for a more
dynamic construction of reward value and enabled easier and
faster decision making, especially for difficult choices between
options with similar objective or subjective values. Together, our
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study reveals a plausible, salience-driven mechanism underlying
valuation of complex gambles.

Currently, there are a number of sophisticated models for
valuation and choice between complex gambles. Most of these
models rely on a rank-dependent mechanism for processing al-
ternative outcomes. Although our model does not use cumula-
tive weighting function, its weighting mechanism makes it
resemble the STC model. Unlike our model, however, STC and
other competing models examined here require complex compu-
tations, and it is unclear how these computations can be instan-
tiated in the brain. In addition, none of these competing models
have been used to fit choice data from individual subjects, and
thus, there is no evidence that they can capture individual vari-
ability. Although choice behavior of some subjects is better cap-
tured by more complex models, our heuristic model provides a
better and more plausible fit for the majority of subjects.

Given our limited processing resources, exhaustively weight-
ing and summating all possible outcomes to evaluate an option is
not feasible unless we can simplify valuation and decision-
making processes using some form of heuristics (Gigerenzer and
Goldstein, 1996; Brandstitter et al,, 2006; Gigerenzer and
Gaissmaier, 2011). In many cases, information must somehow be
prioritized to avoid cognitive overload. Such prioritization has
been assumed to be performed mainly via attentional mecha-
nisms (Treisman and Gelade, 1980; Klein, 1988; McLeod et al.,
1988; Wolfe and Horowitz, 2004; Watson and Kunar, 2010; Rus-
sell and Kunar, 2012). It has been shown that both bottom-up
and top-down attention can influence processing and integration
of reward information and ultimately choice behavior (Krajbich
etal., 2010; Tsetsos et al., 2012; Kunar et al., 2017). By selectively
processing certain outcomes within complex risky options, the
decision maker can reduce computational demands required for
evaluation of such options.

In the case of multi-attribute options, decision making can be
very difficult because it requires weighting the pros and cons of
options that differ across multiple, sometimes incommensurate,
dimensions (Fellows, 2006). Therefore, various heuristics have
been proposed for reducing the computational demands and
complexity of valuation and decision processes in such cases
(even in the absence of risk). This includes differential weighting
of different dimensions, limiting the amount of information, and
reducing the number of alternatives to be considered (Payne et
al., 1993; Gigerenzer and Goldstein, 1996; Gigerenzer and Todd,
1999). Although we assumed that each gamble is assigned an
overall subjective value, decision making in our model can also be
interpreted as weighted comparisons across individual outcomes
based on reward probability or magnitude; that is, the subjects
could directly choose between gambles by comparing values for
similar individual outcomes and combine such comparisons
across all possible outcomes (Tversky, 1969, 1972). This further
illustrates how attention can modulate choice between risky op-
tions by differentially weighting various comparisons across pos-
sible attributes or outcomes.

Critically, we observed a dissociation between what drives the
evaluation of individual outcomes (i.e., a combination of reward
information) and what drives the weighting process (i.e., a single
piece of reward information), which indicates that selective pro-
cessing of reward information may not rely on a combination of
probability and magnitude. The sorting of outcomes based on a
single reward attribute can be seen as a more general case of the
elimination by aspect theory (Tversky, 1972). One possible
mechanism for such processing is selective attention (Busemeyer
and Townsend, 1993; Roe et al., 2001; Shimojo et al., 2003;



5208 - J. Neurosci., June 26, 2019 - 39(26):5195-5209

Hayden et al., 2008; Ludvig et al., 2014). In our task, the most
relevant form of attention is feature-based attention, which could
selectively enhance the representation of certain visual attributes
(e.g., color or size) at the expense of the others (Carrasco, 2011).
Given the visual presentation of gambles in our experiment, sub-
jects could attend to certain “learned” reward features (color and
size) within the gamble and thus, weigh outcomes by their reward
salience. Interestingly, we found that subjects assigned larger
weights to both the best and worst outcomes, indicating that
extreme outcomes were most salient. A plausible neural mecha-
nism for this differential weighting could be biased competition
associated with feature-based attention (Reynolds et al., 1999;
Kastner and Ungerleider, 2001; Beck and Kastner, 2005) or com-
petition at multiple levels of value representation (Jocham et al.,
2012; Hunt et al., 2014). The increased weighting of the best
outcome in terms of magnitude is consistent with observed in-
creases in attention toward larger rewards (Della Libera and
Chelazzi, 2006; Raymond and O’Brien, 2009) and results in risk-
seeking behavior. In contrast, larger weighting of the worst out-
come can contribute to risk-aversion. Together, our results
suggest that attentional processes could contribute to differential
weighting of reward outcomes by their salience, which simplifies
valuation and ultimately results in flexible adjustments of risk
attitudes.

The observed dissociation between the types of reward infor-
mation used for evaluation of individual outcomes and for
weighting of alternative outcomes suggests separate mechanisms
through which reward influences choice and the selective pro-
cessing of information (Soltani et al., 2016; Rakhshan et al., 2018)
and highlights the importance of attention for adaptive choice
under risk at the expense of optimality (Farashahi etal., 2017a,b).
More specifically, although each possible outcome should be
evaluated based on a strategy that combines different pieces of
reward information (and thus could be optimal), differential
weighting based on a single quantity (e.g., reward magnitude or
probability) can enable flexibility depending on the state of the
decision maker. For example, when hungry, the decision maker
could attend more to cues that represent the amount of food, or
reward. This could result in more risk-seeking behavior but also
faster and easier decision making, both of which are crucial for
survival. Finally, the success of our model in capturing individual
subjects’ choice behavior indicates that individual variability in
evaluating complex gambles could arise from differences in the
type of reward information that guides attention.

Therefore, differential weighting of outcomes provides a plau-
sible mechanism for flexible risk attitudes (Huber et al., 1982;
Lattimore et al., 1992; Hey and Orme, 1994; Stewart et al., 2003;
Bruhin et al., 2010; Ludvig et al., 2013; Rigoli et al., 2016; Fu-
jimoto and Takahashi, 2016) and results in a tradeoff between
optimality and flexibility. We have recently shown that a simpler
version of our model can account for monkey’s choice behavior
during choice between simple gambles, providing further evi-
dence for differential weighting (Farashahi et al., 2018). We spec-
ulate that observed deviations from normative theories of choice
could be due to such weighting mechanisms, reflecting the flexi-
bility required for decision making in dynamic environments
(Payne et al., 1988). Together, our results shed light on possible
neural mechanisms of choice under risk in naturalistic settings,
and moreover, highlight the role of attention in the flexible con-
struction of reward value for complex gambles.

We assert that although our study does not include neuronal
measurements, our extensive model fitting and data analyses
provide a simple but plausible mechanism for how value of com-
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plex gambles are constructed, or equivalently, how these gambles
are compared. The main mechanism proposed here (i.e., differ-
ential weighting of individual gamble outcomes) is simple
enough that can be easily implemented via attentional mecha-
nisms. Specifically, attention can be guided to certain gamble
outcomes based on a single attribute and subsequently change
(perhaps via gain modulation) the influence of those outcomes
on the overall value or choice between a pair of gambles. Our
novel finding about the dissociation between how reward infor-
mation is processed when evaluating complex gambles can be
tested in future experiments using neuronal recording.
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